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A method of solving a class of integral equations with a convolution over a finite interval is developed. These equations occur 
in many mixed problems in the mechanics of continuous media and in mathematical  physics. The contact problem in the theory 
of elasticity of pressure transfer from a punch with a strip-shaped cross-section to a linearly deformable base through a Melan 
cover reduces to an equation of this kind. The final results are given as analytic formulae which are convenient  for specific 
calculations, with isolated singularities along boundary-condition transition lines. 

1. We consider a combined linearly deformable foundation consisting of an elastic layer Ix I < oo, lY I < ~*, 
- H  ~< z ~< 0 (shear modulus G2 and Poisson's ratio v2), reinforced on its upper surface by a thin elastic 
covering (G1, vl) of thickness h. The layer either lies without friction on an non-deformable support 
(case 1) or is attached to it (case 2). Suppose that a rigid punch, with a strip-shaped cross-section and 
a base described by the function z = g(x,  y) ,  is impressed into the boundary z = h, I x I < oo, I Y I < oo of 
this compound medium by a force P(y) per unit length applied with eccentricity b, with the contact 
domain defined by the inequalities I x I ~< a, lY I < ~o. Frictional forces between the punch and the base 
are assumed to be zero, and except at the punch surface of the latter is assumed to be unloaded. 

We assume that the parameter n = 010~ -1 >> 1 (0j = Gj(1 - vj) -1, j = 1, 2), but n~ - 1, where ~, = 
ha -1 "~ 1. Then [1] the physical-mechanical properties of the covering can be modelled by a two- 
dimensional analogue of the Melan cover equations 

2(O + - O-) + h( Xx, x + Xy, y ) = 0 

4GlhA(ul,x + agl v ) = 2(1 - v I )('~x x + "~', v ) -  v l  h A (  O+ + O -  ) 

GlhA(ul  v - x)l x ) = X-~ v -'Cv.x 

Here A is the two-dimensional Laplace operator, u 1 and ah are components of the displacement vector 
of points on the covering, and Oz = 0% X~z = x:, Xyz = x~, are given external stresses applied to the lower 
surface (the minus sign) and upper surface (the plus sign) of the covering. 

We will now restrict ourselves to an important special case of the problem posed above. We assume 
that the functions g(x,  y )  and P(y) can be decomposed into Fourier series or integrals overy.  It is then 

-~PY ~PY 1 sufficient to cons ider  g(x,  y )  = g(x)e  " , P(y )  = Pe " and perform a superpos'tion of solutions obtained 
for different values of the parameter I~. We will further assume that c = a I l] I ~< D < .o where Dg  ,~ 1 
(D = const). The latter inequality is the "condition of applicability of thin-plate theory" [2] and indicates 
that the external load is smoothly distributed over the surface of the covering z = h. The case 13 = 0 
was investigated in [3], and we will therefore not consider it. 

Using the results of [3, 4] we obtain an integral equation for the unknown amplitude o(x) of the contact 
pressure Oz(X, y ,  h )  = --o(x)e  -~y under the punch. Using the notation 

~a=~a-1,  x t = x a  -1, A = H a  -1, q ( x l ) = ( e O 2 ) - t o ( x )  

f (x l )=~a- I  +0x l -g (x )a - I '  e i = ( l - 2 v j ) [ 2 ( l - v i  )]-1 

I.tl =n~.A -I, I.t2 =8~t1(1+1<2) -2, ~ :2=3-4v2  

e = ( l - e ~ )  -l, p J = ( e O 2 a ) - I p ,  M = P l b a  -I 
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(where (5 + ~ ) e  -/1~ is the rigid displacement of the punch under the action of the force Pe -/t~ and torque 
Pbe ~1~ applied to it, and the prime is henceforth omitted), we write it in the form 

Fq = f  (Ixl ~< 1) (1.1) 

Pq=jq(~)k (~- - )~ ,  k(t)=--~+[K(oOe+do~ (1.2) 

where 

K(a)= e--× 
u 

~t'_ + Ix2ul"_ 
case 1 sh 2u + 2u + 2~tn uUg+ 

21"_ + 4B:u(~ 2 sh 2 u -  u 2 ) 

21~2W +(1+1C2) 2 + 4 u  2 +41.tlUF+ 
case 2 

(1.3) 

hU±=ch2u:kl, F±=~2sh2u+2u,  u= ~ 2 ~ - - ~  -, ~ = c A  

If we reformulate the problem so that the base is taken to be an elastic half-space, we still have the 
integral equations (1.1) and (1.2), but with A = 27~n and 

u + £  
K(cz) / , I  

u(u + 1 ) 

Equation (1.1), (1.2) has to be supplemented with the statics conditions 

I I 

P= J q(x)dx, M= jxq(x)dx (1.5) 
-1 - I  

which express the equilibrium of the punch at the base. 
Note that the structure of the solution of integral equation (1.1), (1.2) and its properties are mainly 

governed by the behaviour of the kernel symbol (1.3), (1.4) along the real axis. Below we assume that 
K(a) is a real, even, continuous and positive function for I a I < oo, with the following asymptotic behaviour 

K(~) = A +Bcx z + O(o~ 4 ) (0~ -'~ 0) (1.6) 

K(ct) =1~1-1 [1 + CIo~l -n +O(ct -2)] (Iotl----) oo) 

(There is an inaccuracy in the asymptotic formulae (1.7) in [3]. They should be replaced by the 
expressions (1.6) given here.) 

This is the framework for the contact problem in question for the transmission of pressure to a linearly 
deformable medium through a covering. The symbols K(t~) of the form (1.3) and (1.4) satisfy conditions 
(1.6) in which, for example, for case (1.4) one must put 

A= E+I] B= 1 ~+2"q~+'q 2 C = ~ - I  
B(1 + rl)' 2 113 (1 + rl) 2 ' 

(1.7) 

On the basis of (1.6) it has been proved [5] that iff(x) ~ H~(-1, 1) (0 < r ~< 1), the integral equation 
(1.1), (1.2) is uniquely solvable in the space Lp(-1, 1) of functions integrable in the interval [-1, 1] with 
degreep  (1 < p < 2), and its solution q(x) can be represented in the form 

q(x) = (1 - x 2 )-~ re(x) (1.8) 

to(x) ~ H~(-1,1), s=inf(r,(p-l)lp) 

We also have the well-posedness relations 

IlqllLp <~ D t (A)llfllnf, IIo~llHi ~ ~ D2(A)IIflInf (1.9) 
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Here DI(A) and D2(A) are constants bounded for any fixed A ~ (0, **), and HVm(-1, 1) is the space 
of functions whose mth derivatives satisfy the H61der condition with index T when I x I <~ 1. 

2. To construct the solution of (1.1), (1.2) with kernel symbol (1.6) we use a modification of the 
Galerkin projection method [6, 7]. We introduce the Hilbert spacesH_m (-1, 1) and L2(-1, 1) and specify 
within them two cx~mplete systems of coordinate (basis) functions 

{qOm(X)}, {Vm(X)} (m=O,1,2...) (2.1) 

whose linear envelopes are a limitingly dense sequence of subspaces. 
The space H-lr,! (-1, 1) is defined in [5, 7] as the closure of Lp(-1, 1) (1 < p < 2) in the norm 

Ilqol12~ = (a)lO(a)12da, q)(a)= I(p(~)ea*4/^d~ 
- -  - - ]  

According to Ct.8) the solution q(x) has a root singularity at the points x = ---1 and so in the first 
case one has to us~ a system of functions with singularities of this type. This is not the case for the second 
system became the fight-hand side fix) of Eq. (1.1) and the residue z~x) (see below) are smooth 
functions. 

We represent an approximate solution in the form 

N 

q N ( X )  = ~ ,  amtP,, ,(X) (2.2) 
m=O 

where the coefficiq~nt am is determined from the orthogonality OfZN = F q ~ - f t o  elements of the second 
coordinate sequence 

(ZN,~Ij)L2=O (j =0,1,2 ..... N) (2.3) 

Relations (2.3) reduce to a system of linear algebraic equations of (N + 1)th order in the unknowns 
am 

N 
,~oCJ,,am=b~ (j = 0,1,2 ..... N) (2.4) 

cjm = (Fg0.,,~Cj)L2, bj =(/,~¢y)L2 

which can be shown [7] to have a non-degenerate matrix because of the well-posed solvability of the 
integral equation (1.1), (1.2), (1.6) in Lp(-1, 1) (1 < p < 2). Moreover, by (1.9) and the previously 
described properties of the coordinate functions, we can write 

IIq- qN IILp ~< CI (A)llq- qN IIH~ ~ C 2 (A)IIzN IIHf ~< C 3 (A)IIzN IlL2 ---) 0 (N ~ ~) 

(where C,(A), C2(A), C3(A) are constants) which demonstrates the applicability of Galerkin's method 
for solving the original integral equation for all values of the parameter A e (0, ~). 

We take the ba.,fis functions to be (m = 0, 1, 2 . . . .  ) 

{ j, {p:(x)}, 

where Tin(x) and l%(x) are Chebyshev and Legendre polynomials. Using the definite integrals 

i T m (x) e±iaXd x = 7te±ranil2jr a ((g) 

1 2 ~  +_trmil2-- . - J P,,,(x)e±mdx=3~'-'~'e am.j~(a) 
-I 

(where Jr(x) is the Bessel function) we represent the matrix elements of system (2.4) in the form 
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~jm (x) = Jj+~ (x)A. (x) 

If we take the splines 

~lm(X ) f X--X m "~ 
(Pm(X) : l_sf~X2, ~[/m(X)-----~l/~"'--~) (m:0 ,1 ,2  ..... N) 

• 0 'x' 

(2.5) 

(2.6) 

to be the coordinate functions, we arrive at the variational-difference method [7] for solving integral 
equation (1.1), (1.2), (1.6). Here the nodes Xm = -1 + r(2m + 1)/2 (m = 0, 1, 2 , . . . ,  N) cover the 
interval [-1, 1] with steps of r = 2(N + 1) -1. 

Introducing the functions (2.6) into the second and third formulae of (2.4) and using the quadrature 
approximation [8] 

~¢(x)e-~X~dx 2 ~ . . , 2(1-cosa) 
i " 2 "-"-~J~t~x)c°s t txax2 0 = 

- ~ l l - ( rx+xa)  l a]l-x 2 a2 l~-x2m 

as r --~ O, we have 

4rA "7. (A "~(l-cosa)2 ( - x  j ]  
CjmmCmj = ~ ~K~-7-a ) 1~4 COS (X xm r d a  

xj+r r x \ (2.7) 

In the last relation in (2.7) we have used the 15-shape of the system of coordinate functions ym(X). 
The key feature of the version of Galerkin's projection method being used here is the evaluation of 

the integrals of rapidly oscillating functions in (2.5) and (2.7). This difficulty is overcome by an algorithm 
from [9]. As an example, for the quadrature in formula (2.5) this algorithm gives 

cn=nl, en=(l+n)l, a~=(c,,+e~)/2 

x[~i,m+ 1 (X)-- ;j+l,m(X)] ~i"(X) 
SJ m(X)= m2_( j+~)2  ~ m+j+l/2 

Here I is a sufficiently small number which describes the distance between the nodes cn and en. 
Having constructed the function q~x) in accordance with (2.2), we then find the amplitudes of the 

force P and torque M applied to the punch. In the first and second system of coordinate functions they, 
respectively, acquire the forms 

P=Ikl O, r f aj ; M _  rC r Iv xja.____Lj 
j_-o41_ x) - 2  a'' j~_ ~ 

We noted above that the proposed Galerkin's method works for all values of the parameter A e (0, 
~,). However, a numerical analysis of specific problems shows that when A ---) 0 its efficiency falls because 
of the substantial increase in the number of equations in system (2.4) used to obtain the approximate 
solution (2.2) to a specified accuracy. We therefore present an algorithm for investigating the integral 
equation (1.1), (1.2), (1.6) which can be sensibly used for small values of A. 
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We apply a well-known result [10] of Krein, and restrict ourselves to the case f(x) ----f = const. Then 
the leading term of the asymptotic solution of the original integral equation can be represented in the 
form [5] 

x f l+x  + 1-x  x) x 
q()='~-[Z(-'~----) X ( - ' ~ - - ) - ( ' ~ ) ]  (2.8) 

where the functions Z(t) and u(t) are determined by the integral equations 

~X(x)k(x-t)dx=l (0~< t<.o) (2.9) 
0 

7~(x)k(x-t)dx = 1 (Itl< o.) (2.10) 

The solution of Eq. (2.10) is constructed using the convolution theorem for Fourier transformations 
and has the form 

~( xA-I ) = A -l (2.11) 

The solution of tSq. (2.9) can be obtained by a Wiener-Hopf method whose use requires the kernel 
symbol K(a) to be approximated by an expression 

K , ( o t ) = ~ + h 2 ( h R ) K , ( O ) = A ~ 2 + h  2 exp ~ o t 2 +  2 ' 

that is consistent w:ith formulae (1.6). 
Basing ourselves on the results in [5] we write 

(2.12) 

1 1 . e-i;td~ 
Z(t) = K_(0) 2~i J K ~  (2.13) 

In (2.13)the contour F is a line lying just above the real axis in the complex ~ = a + io plane, and 

K,(~) = K+(~)K_(~) 

where K+(~) and K2(~) are regular in the upper half-plane Im ~ > --o+ and lower half-plane Im ~ < 
6_ and have no zeros in these half-planes. 

Because the techJfique for factorizing functions of the form (2.12) is well known [3, 11] we will merely 
give the final results 

K+(~)= 4~+-ih3 eh,"±(;), ~t+_(~)= +_i 
- ;+-ih4 1c4; ~ +h~ 

in ; + 4 ;  2 +h 2 (2.14) 
_+ih 2 

From(2.12) and (2.14)itfoHowsthat 

K_(0)= K+(0)=ff-~ (2.15) 

We substitute (2.14) and (2.15) into (2.13) and for convenience convert  the latter from an integral 
Fourier transform into a Laplace-Carson transform putting { = ip. We obtain 

1 1 X(p) ePtd p 

p + h ,  . . . .  l . p+4:-h  X(p)=a/p+h3e -h#(p), I . t [ p ) - ~ l n  -~ 
(2.16) 
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Here  L is a line lying just to the fight of the imaginary axis in the complexp plane. 
Then, in order to obtain results that are applicable in practice we approximate the exponent in the 

second formula in (2.16) by the expression [11] 

exp[-htlx(p)] - 1-  hl~t(p ) (2.17) 

Note that the error in approximation (2.17) when R e p  > 0, I m p  = 0 does not exceed 1% for the 
values of the constants hi and h2 found below. 

Substituting (2.17) into (2.16) and using the table in [12], we write 

. . _ l _ _ ~ r e  -~t h 4 , - - -  l l ( t)]  X(t)-  erfVh. ,+ 

h ' I,(t)=-~3 terf~R,(x)dx (2.18) 

where K0(x) is the Macdonald function. 
We determine the integral characteristic of the solution P constructed by substituting (2.8) into (1.5). 

Bearing in mind relations (2.11) and (2.18), we have 

o A 3/Ah3 " 

1 2 h 3 t - l e r f  h~3t+ ~ t e_J~t 
I¢=~-, R 2(t)= 2h3 . nh3 

12( t )= -  R 2 ( t - x ) R l ( ' O d x  

3. As an example we present numerical calculations for problem (1.1), (1.2), (1.4) by the three methods given 
in Section 2, for f(x) = f = const and various values of the dimensionless parameter A • (0, -0). Suppose that in 
(1.4) v2 = 0.3 (e = 1.08889), c = 1. We select the constants hj (] = 1, 2, 3, 4) in (2.12) using Eq. (1.7), relations 

A=h-~-~exp(hl~ h ~ / B + - ~ 3 / =  1 - A e x p I - h l ~  C=h I 
h~ ~h 2 j  "[A 2h~J 2h 3 [, I12 J 

and the requirement to minimize I 1 - K.(a)K-l(a)  I for I a I < **. 
The results of the calculations are given below (hi = 0.08889 for all values of A) 

A 0.25 0.5 1 2 
h 2 2.1413 2.4137 0.8193 18007 
h 3 0,2024 0.4237 0.9321 1,9478 
h 4 0.2219 0.4555 0.9974 i.9937 

Note that the relative error of approximation (2.12) for the given values of hj does not exceed 0.25% over the entire 
real axis. Then the error of the approximate solution (2.8), (2.11) and .(2.18) using (2.17) amounts to about 1%. 

The values of the dimensionless contact pressure amplitude eq(x)f q and the amplitude of the punch embedding 
force ePf q are shown in Table 1. The rows are grouped in triplets, in each of which the first row shows the results 
of the calculations using the first algorithm, etc. 

We can draw the following conclusions from the data in Table 1: 
1. the first and second methods can be sensibly used for 0.5 ~< A < **; for such values of A the number of equations 

in system (2.4) does.not exceed 5 and 20 respectively, and the relative errors of the results are less than 2%; 
2. the small A method works when A <~ 2; 
3. matching of the results is observed when 0.5 <~ A ~< 2; 
4. if the effect of the reinforcing cover is ignored in the case A = 1, comparison with results from [5, 13] shows 

that the error exceeds 14%. 
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A x = 0 0,2 0,4 0.6 0.8 0,9 0,95 EPj" I 

0 1.101 1,112 1.151 1,245 1,521 1,974 2.665 2,994 
[5, 131 

1,097 I,I 10 i.147 1,253 1.527 1.966 2.658 2,983 
0.25 1,109 1.123 1,159 1.251 1,525 1,988 2.684 3.016 

1,166 1.179 1,219 1.318 1,608 2.086 2.813 3.164 

1,163 1.176 1,219 1,315 1.605 2,089 2,815 3.175 
0,5 1.165 i.175 1.215 1,317 1,609 2.091 2.813 3.173 

1.175 1,185 1.226 1.326 1,618 2.098 2.826 3.184 

1.246 1,265 1,305 1.409 1.685 2.170 2.899 3,337 
I 1.250 1.268 1.309 1,407 1,694 2,173 2.905 3,342 

1,252 1.264 1,303 1.401 1.687 2,166 2,894 3,335 

1.210 1,221 1.269 1.375 1,680 2,159 2,870 3.286 
2 1.213 1,225 1.271 1,373 1.678 2.160 2.873 3,292 

1.203 1,215 1.257 1,360 1.661 2,156 2.865 3.271 

4 1.203 1.213 1,261 1.366 1.668 2.149 2.858 3.269 
1,207 1,2 ! 5 1.260 1,365 1.669 2.150 2,861 3.270 

8 1.189 !.201 1,243 1.347 1.649 2,130 2,839 3,235 
i. 191 1.203 1.242 1,347 1.645 2.135 2.842 3.239 

This research was performed with financial support from the Russian Foundation for Basic Research 
(94-01-00181-a). 
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