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THE EFFECT OF A STRIP-SHAPED PUNCH
ON A LINEARLY DEFORMABLE FOUNDATION
STRENGTHENED BY A THIN COVERING+

N. V. GENERALOVA and Ye. V. KOVALENKO
Moscow
(Received 2 September 1994)

A method of solving a class of integral equations with a convolution over a finite interval is developed. These equations occur
in many mixed problems in the mechanics of continuous media and in mathematical physics. The contact problem in the theory
of elasticity of pressure transfer from a punch with a strip-shaped cross-section to a linearly deformable base through a Melan
cover reduces to an equation of this kind. The final results are given as analytic formulae which are convenient for specific
calculations, with isolated singularities along boundary-condition transition lines.

1. We consider a combined linearly deformable foundation consisting of an elastic layer | x | < oo, |y | < o0,
—H = z < 0 (shear modulus G, and Poisson’s ratio v,), reinforced on its upper surface by a thin elastic
covering (G, v;) of thickness k. The layer either lies without friction on an non-deformable support
(case 1) or is attached to it (case 2). Suppose that a rigid punch, with a strip-shaped cross-section and
a base described by the function z = g(x, y), is impressed into the boundaryz = h, | x| < e, |y | < o Of
this compound medium by a force P(y) per unit length applied with eccentricity b, with the contact
domain defined by the inequalities | x | < a, | y | < «. Frictional forces between the punch and the base
are assumed to be zero, and except at the punch surface of the latter is assumed to be unloaded.

We assume that the parameter n = 6,6, > 1 6 =G;1- vj)’l, j=1,2),but nk ~ 1, where A =
ha™ < 1. Then [1] the physical-mechanical properties of the covering can be modelled by a two-
dimensional analogue of the Melan cover equations

2(6* -6 ) +h(T,  +1,,)=0
4G hAGuy, +01,)=2(1= v, X(T;, +T;,) = V{hA(C* +67)

GlhA(ul,)' ~ Vi, )= T;,y _T;,x

Here A is the two-dimensional Laplace operator, ¥, and v, are components of the displacement vector
of points on the covering, and 0, = 6%, 1,, = 1;, T,, = T, are given external stresses applied to the lower
surface (the minus sign) and upper surface (the plus sign) of the covering.

We will now restrict ourselves to an important special case of the problem posed above. We assume
that the functions g(x, y) and P(y) can be decomposed into Fourier series or integrals over y. It is then
sufficient to consider g(x, y) = g(x)e™?, P(y) = Pe"? and perform a superposition of solutions obtained
for different values of the parameter B. We will further assume thatc = a |B| <D < cowhere DA <1
(D = const). The latter inequality is the “condition of applicability of thin-plate theory” [2] and indicates
that the external load is smoothly distributed over the surface of the covering z = h. The case B = 0
was investigated in [3], and we will therefore not consider it.

Using the results of [3, 4] we obtain an integral equation for the unknown amplitude o(x) of the contact
pressure o,(x, y, h) = —6(x)e™® under the punch. Using the notation

E=ta”, x'=xa”!, A=Ha™, 4(x')=(e8,)"o(x)
f(xy=8a""+8x' —g(x)a”!, £, =(1-2v))2(1-v,;)]”"
Hi=mAAT, L, =8, (1+K,) 7%, Ky =3-4v,
e=(1-e)"', P'=(e0,a)' P, M=Pba™
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(where @+ Qx)e“ﬁ" is the rigid displacement of the punch under the action of the force Pe™® and torque
Pbe P applied to it, and the prime is henceforth omitted), we write it in the form

Fg=f (kK =<1) (1.1)
Fg= !q(é)k(ﬁ X E, k(t)—z— j K(o)e™ do. (1.2)
where
W+ pul_ case 1

_€_|sh2u+2u+2put¥,
k(ey==> 2T +4,u(x3sh? u—u?)
26, +(1+K, )% +4u? +4p,ul,

(1.3)
case 2

¥, =ch2utl, T,=k;sh2u2u, u=ya2+n?, n=cA

If we reformulate the problem so that the base is taken to be an elastic half-space, we still have the
integral equations (1.1) and (1.2), but with A = 2An and

u+€
K(Ot)—u(uH) (14)

Equation (1.1), (1.2) has to be supplemented with the statics conditions
1 1
P=[q(x)dx, M= j'lxq(x)th (L.5)
1 Z

which express the equilibrium of the punch at the base.

Note that the structure of the solution of integral equation (1.1), (1.2) and its properties are mainly
governed by the behaviour of the kernel symbol (1.3), (1.4) along the real axis. Below we assume that
K(o) is a real, even, continuous and positive function for | o | < e, with the following asymptotic behaviour

K(@)=A+Bo>+0(a*) (a—0) (1.6)
K@) =lol™ ' [1+ Clal™ +0(a72)] (lod— )

(There is an inaccuracy in the asymptotic formulae (1.7) in [3]. They should be replaced by the
expressions (1.6) given here.)

This is the framework for the contact problem in question for the transmission of pressure to a linearly
deformable medium through a covering. The symbols K{(o) of the form (1.3) and (1.4) satisfy conditions
(1.6) in which, for example, for case (1.4) one must put

2
__&gtn  p  leddmernt o, (1.7)

Tna+w’ T 2 n'asn)?
On the basis of (1.6) it has been proved [5] that if f(x) € H{(-1, 1) (0 < r < 1), the integral equation

(1.1), (1.2) is uniquely solvable in the space L,(-1, 1) of functions integrable in the interval [-1, 1] with
degree p (1 < p < 2), and its solution g(x) can be represented in the form

g(x)=1-x) " o(x) (18)
w(x)e Hy(-1,1), s=inf(r,(p-1)/p)
We also have the well-posedness relations

gy, < Dy (AN fll,, loll, < Dy (ANISIL, (1.9)
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Here Dy(A) and D5(A) are constants bounded for any fixed A € (0, =), and HY,(-1, 1) is the space
of functions whose mth derivatives satisfy the Hélder condition with index ywhen | x| < 1.

2, To construct the solution of (1.1), (1.2) with kernel symbol (1.6) we use a modification of the
Galerkin projection method [6, 7]. We introduce the Hilbert spaces H_; (—1, 1) and Ly(~1, 1) and specify
within them two complete systems of coordinate (basis) functions

{(Pm(x)}’ {\Vm(x)} (m=0!1’2) (2'1)

whose linear envelopes are a limitingly dense sequence of subspaces.
The space H_y, (-1, 1) is defined in [5, 7] as the closure of L,(-1, 1) (1 < p < 2) in the norm

il
LY H_y,

2 TK(Ot)Id)(a)Fda, o) = }(P(E_,)e"’é”‘dg
- il

According to (1.8) the solution g(x) has a root singularity at the points x = +1 and so in the first
case one has to use a system of functions with singularities of this type. This is not the case for the second
system because the right-hand side f(x) of Eq. (1.1) and the residue zy{x) (see below) are smooth
functions.

We represent an approximate solution in the form

N
gn(x)= mgo APy (1) (2.2)

where the coefficient a,, is determined from the orthogonality of zy = Fgy —~f to elements of the second
coordinate sequence

(zy. W), =0 (j=0,1.2,...N) (23)

Relations (2.3) reduce to a system of linear algebraic equations of (N + 1)th order in the unknowns
am

N
3 Cinn =b; (j=01,2..N) 2.4)

Cim=FQ,.¥)1,, bj=(f,¥;),
which can be shown [7] to have a non-degenerate matrix because of the well-posed solvability of the
integral equation (1.1), (1.2), (1.6) in L,(-1, 1) (1 < p < 2). Moreover, by (1.9) and the previously
described properties of the coordinate functlons, we can write
llg—gnli,, < Ci(M)lig—gylly ¥ < C2(A)IIzNIIHl, < G(Mlizyll,, >0 (N — )
R

(where Cy(A), C(A), C3(A) are constants) which demonstrates the applicability of Galerkin’s method
for solving the original integral equation for all values of the parameter A € (0, ).
We take the basis functions tobe (m =0, 1, 2,...)

{T(")} (P Ph(x)= 2'"2“Pm(x>

Vi-x22

where T,,(x) and P,,(x) are Chebyshev and Legendre polynomials. Using the definite integrals

1
J T (‘x) il(lxdx neimm/ZJ (a)

Vi

) 2 .
_j] P, (x)et™dx = —a’-‘-e*’"""zjm%(a)

(where J,(x) is the Bessel function) we represent the matrix elements of system (2.4) in the form
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_ - K(o) o
=[TA(2 ,+1)cos“(—'"2-1—) {”\/TC jm(x)da

2.5)
Cim(D) =3 (DT (%)
If we take the splines
(pm(x)—%_)— v, (x)= \v( ) (m=0,1,2,...,N)
(2.6)

1-xl (lxl<1)
"’("){‘ 0 (xb1)

to be the coordinate functions, we arrive at the variational-difference method [7] for solving integral
equation (1.1), (1.2), (1.6). Here the nodes Xp=-14+r2m+ 1)2m=0,1,2 » N) cover the
interval [1, 1] with steps of r = 2(N + 1)L,

Introducing the functions (2.6) into the second and third formulae of (2.4) and using the quadrature
approximation [8]

1 ~i0tx
y(x)e dx - 2 j'\v(x)cos [ _2(1—cosa)
S TR TN o?y1-x2

asr — 0, we have

4 o -,
rA ( )(l (;:)fa) os(ax'" x’]da

7‘\“ x IK

sjr 2.7
J f(x)\v( ]dx m(x;)

In the last relation in (2.7) we have used the &-shape of the system of coordinate functions y,,(x).

The key feature of the version of Galerkin’s projection method being used here is the evaluation of
the integrals of rapidly oscillating functions in (2.5) and (2.7). This difficulty is overcome by an algorithm
from [9]. As an example, for the quadrature in formula (2.5) this algorithm gives

K(o) _ ¥ En)_g (Sn
cads by COPACHCR DA GO RN G
=nl, e,=(+n)l, a,=(c,+e,)/2

[CI m+] (x) Cl+lm(x)] ij(x)
m’ —(j+ 1) m+j+%

O‘—.X

o

n

Sjm(x)=—

Here [ is a sufficiently small number which describes the distance between the nodes c,, and e,,.

Having constructed the function gy{(x) in accordance with (2.2), we then find the amplitudes of the
force P and torque M applied to the punch. In the first and second system of coordinate functions they,
respectively, acquire the forms

N a:
P=may, ry ———; M

et L Y e

We noted above that the proposed Galerkin’s method works for all values of the parameter A € (0,
o). However, a numerical analysis of specific problems shows that when A — 0 its efficiency falls because
of the substantial increase in the number of equations in system (2.4) used to obtain the approximate
solution (2.2) to a specified accuracy. We therefore present an algorithm for investigating the integral
equation (1.1), (1.2), (1.6) which can be sensibly used for small values of A.



The effect of a strip-shaped punch on a linearly deformable foundation 793

We apply a well-known result [10] of Krein, and restrict ourselves to the case f{x) = f = const. Then
the leading term of the asymptotic solution of the original integral equation can be represented in the

form [5]
q(x)=ﬂx(l-j-\i)+x(l—:\i)—v(ﬂ] 2.8)

where the functions x(#) and v(#) are determined by the integral equations

Ix(t)k(t—t)d'r:l (0<t<oo) (2.9)
TD(‘C)k(T—t)d‘t=l (ltl< o0) (2.10)

The solution of Eq. (2.10) is constructed using the convolution theorem for Fourier transformations
and has the form

v(xA™)=4"" (2.11)

The solution of Eq. (2.9) can be obtained by a Wiener—-Hopf method whose use requires the kernel
symbol K(o) to be approximated by an expression

a’+h? h
K. o)= = 1 N K... = .
=g N | O @12)

that is consistent with formulae (1.6).
Basing ourselves on the results in [5] we write

11 | e™dg

— 1
K_(0)2mit+ K, ()¢ @13)

x(n=

In (2.13) the contour T is a line lying just above the real axis in the complex £ = o + ic plane, and

K.(©)=K, (©OK_()

where K, () and K_(§) are regular in the upper half-plane Im { > —c,, and lower half-plane Im { <
o_ and have no zeros in these half-planes.

Because the technique for factorizing functions of the form (2.12) is well known [3, 11] we will merely
give the final results

+ih , 2 2
______VC’-‘e,"mt(O, ()= —e ] CHye +h (2.14)

K. Q)= : n .
- Ctihy n\/Zz +h} +ihy
From (2.12) and (2.14) it follows that
K_(0)=K,(0)=+Ai (2.15)

We substitute (2.14) and (2.15) into (2.13) and for convenience convert the latter from an integral
Fourier transform into a Laplace—Carson transform putting { = ip. We obtain

1 1 . X
tO=Tram
(2.16)
2 2
X(p)= 2P e AR

1
r_p+h3 » u(p)_JpT_h% h/z
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Here L is a line lying just to the right of the imaginary axis in the complex p plane.
Then, in order to obtain results that are applicable in practice we approximate the exponent in the
second formula in (2.16) by the expression [11]

expl—hu(p)]l=1-hmu(p) (217)

Note that the error in approximation (2.17) when Re p > 0, Im p = 0 does not exceed 1% for the
values of the constants 4, and 4, found below.
Substituting (2.17) into (2.16) and using the table in [12], we write

X@)=—4 [ ,— r_erf hgt+1|(t)j|
h
I =— 1 -
NG nﬁ; gerf,/h3(t TR, (T)dt (2.18)

R(t)= Ko(hzt)+h4l:2—:2— —TKO(hzs)ds}

where Ky(x) is the Macdonald function.
We determine the integral characteristic of the solution P constructed by substituting (2.8) into (1.5).

Bearing in mind relations (2.11) and (2. 18), we have

P= 2fjx(t)d1--—— [erf h,x+h4R2(x)+12(x)]-ﬁ
:ZAh

K= -1—, Ry(t)= 2hit -1 erf \ hyt + L gt
A 2h, ¥\ h

h !
L(t)= ——n'- t);Rz (t-T)R (T)dt

3. As an example we present numerical calculations for problem (1.1), (1.2), (1.4) by the three methods given
in Section 2, for f(x) = f = const and various values of the dimensionless parameter A € (0, «). Suppose that in
(1.4) v, = 0.3 (e = 1.08889), c = 1. We select the constants k; (j = 1, 2, 3, 4) in (2.12) using Eq. (1.7), relations

h
A=—'—%exp h hy £+—'”7 =~—1——Aexp -1 c=n
h4 h2 1A 2h2 2’1} 112

and the requirement to minimize | 1 - K,(0)K (cc) | for | o | < o,
The results of the calculations are given below (h; = 0.08889 for all values of A)

A 0.25 0.5 1 2

hy 2.1413  2.4137 08193 18007
n 02024 04237 09321 19478
hy 02219 04555 0.9974 1.9937

Note that the relative error of approximation (2.12) for the given values of 4; does not exceed 0.25% over the entire
real axis. Then the error of the approximate solution (2.8), (2.11) and (2 18) using (2.17) amounts to about 1%.

The values of the dimensionless contact pressure amplltude eq(x)f and the amplitude of the punch embedding
force ePf ™ are shown in Table 1. The rows are grouped in triplets, in each of which the first row shows the results
of the calculations using the first algorithm, etc.

We can draw the following conclusions from the data in Table 1:

1. the first and second methods can be sensibly used for 0.5 < A < eo; for such values of A the number of equations
in system (2.4) does pot exceed 5 and 20 respectively, and the relative errors of the results are less than 2%;

2. the small A method works when A < 2;

3. matching of the results is observed when 0.5 < A < 2;

4. if the effect of the reinforcing cover is ignored in the case A = 1, comparison with results from [5, 13] shows
that the error exceeds 14%.



The effect of a strip-shaped punch on a linearly deformable foundation 795

Table 1

A x=0 0.2 04 06 038 09 0.95 epy!

0 1.101 1.112 1151 1.245 1.521 1.974 2,665 2,994
(5.13)

1,097 1110 1.147 1.253 1.527 1.966 2.658 2983

0.25 1,109 1.123 1.159 1,251 1.525 1.988 2.684 3.016

1,166 1.179 1219 1.318 1.608 2.086 2.813 3.164

1,163 1.176 1.219 1315 1.605 2.089 2815 3.175

0.5 1,165 1175 1.215 1317 1.609 2.091 2.813 3473

1.175 1,185 1,226 1.326 1.618 2,098 2.826 3.184

1.246 1.265 1,305 1.409 1.685 2.170 2.899 3.337

1 1.250 1.268 1.309 1.407 1.694 2173 2.905 3.342

1.252 1.264 1,303 1.401 1.687 2.166 2,894 3.335

1.210 1,221 1,269 1.375 1,680 2.159 2.870 3.286

2 1.213 1.225 1.271 1,373 1.678 2.160 2.873 3.292

1.203 1.215 1.257 1.360 1.661 2,156 2.865 3.271

4 1.203 1.213 1.261 1.366 1,668 2.149 2,858 3.269

1,207 1.215 1.260 1,365 1.669 2.150 2.861 3.270

8 1.189 1.201 1.243 1,347 1.649 2,130 2,839 3.235

1.191 1.203 1.242 1,347 1.645 2.135 2.842 3.239
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